

Science Grade-Level Expectations: Earth Science (Recommended for Grades 11–12)

Science as Inquiry

The Abilities Necessary to Do Scientific Inquiry

- 1. Write a testable question or hypothesis when given a topic (SI-H-A1)
- 2. Describe how investigations can be observation, description, literature survey, classification, or experimentation (SI-H-A2)
- 3. Plan and record step-by-step procedures for a valid investigation, select equipment and materials, and identify variables and controls (SI-H-A2)
- 4. Conduct an investigation that includes multiple trials and record, organize, and display data appropriately (SI-H-A2)
- Utilize mathematics, organizational tools, and graphing skills to solve problems (SI-H-A3)
- 6. Use technology when appropriate to enhance laboratory investigations and presentations of findings (SI-H-A3)
- 7. Choose appropriate models to explain scientific knowledge or experimental results (e.g., objects, mathematical relationships, plans, schemes, examples, role-playing, computer simulations) (SI-H-A4)
- 8. Give an example of how new scientific data can cause an existing scientific explanation to be supported, revised, or rejected (SI-H-A5)
- 9. Write and defend a conclusion based on logical analysis of experimental data (SI-H-A6) (SI-H-A2)
- 10. Given a description of an experiment, identify appropriate safety measures (SI-H-A7)

Understanding Scientific Inquiry

- 11. Evaluate selected theories based on supporting scientific evidence (SI-H-B1)
- 12. Cite evidence that scientific investigations are conducted for many different reasons (SI-H-B2)
- 13. Identify scientific evidence that has caused modifications in previously accepted theories (SI-H-B2)
- 14. Cite examples of scientific advances and emerging technologies and how they affect society (e.g., MRI, DNA in forensics) (SI-H-B3)
- 15. Analyze the conclusion from an investigation by using data to determine its validity (SI-H-B4)
- 16. Use the following rules of evidence to examine experimental results:
 - (a) Can an expert's technique or theory be tested, has it been tested, or is it simply a subjective, conclusive approach that cannot be reasonably assessed for reliability?
 - (b) Has the technique or theory been subjected to peer review and publication?
 - (c) What is the known or potential rate of error of the technique or theory when applied?
 - (d) Were standards and controls applied and maintained?
 - (e) Has the technique or theory been generally accepted in the scientific community? (SI-H-B5) (SI-H-B1) (SI-H-B4)

Earth and Space Science

Energy in Earth's System

- 1. Describe what happens to the solar energy received by Earth every day (ESS-H-A1)
- 2. Trace the flow of heat energy through the processes in the water cycle (ESS-H-A1)
- Describe the effect of natural insulation on energy transfer in a closed system (ESS-H-A1)

Science Grade-Level Expectations: Earth Science (Recommended for Grades 11–12)

- Describe the relationship between seasonal changes in the angle of incoming solar radiation and its consequences to Earth's temperature (e.g., direct vs. slanted rays) (ESS-H-A2)
- 5. Explain how the process of fusion inside the Sun provides the external heat source for Earth (ESS-H-A3)
- 6. Discuss how heat energy is generated at the inner core-outer core boundary (ESS-H-A4)
- 7. Analyze how radiant heat from the Sun is absorbed and transmitted by several different earth materials (ESS-H-A5)
- 8. Explain why weather only occurs in the tropospheric layer of Earth's atmosphere (ESS-H-A5)
- 9. Compare the structure, composition, and function of the layers of Earth's atmosphere (ESS-H-A6)
- 10. Analyze the mechanisms that drive weather and climate patterns and relate them to the three methods of heat transfer (ESS-H-A6)
- 11. Describe the processes that drive lithospheric plate movements (i.e., radioactive decay, friction, convection) (ESS-H-A7) (ESS-H-A3) (ESS-H-A4)
- 12. Relate lithospheric plate movements to the occurrences of earthquakes, volcanoes, mid-ocean ridge systems, and off-shore trenches found on Earth (ESS-H-A7)

Geochemical Cycles

- 13. Explain how stable elements and atoms are recycled during natural geologic processes (ESS-H-B1)
- 14. Compare the conditions of mineral formation with weathering resistance at Earth's surface (ESS-H-B1)
- 15. Identify the sun-driven processes that move substances at or near Earth's surface (ESS-H-B2)

The Origin and Evolution of the Earth System

- 16. Use the nebular hypothesis to explain the formation of a solar system (ESS-H-C1)
- 17. Determine the relative ages of rock layers in a geologic profile or cross section (ESS-H-C2)
- 18. Use data from radioactive dating techniques to estimate the age of earth materials (ESS-H-C2)
- 19. Interpret geological maps of Louisiana to describe the state's geologic history (ESS-H-C3)
- 20. Determine the chronological order of the five most recent major lobes of the Mississippi River delta in Louisiana (ESS-H-C3)
- 21. Use fossil records to explain changes in the concentration of atmospheric oxygen over time (ESS-H-C4)
- 22. Analyze data related to a variety of natural processes to determine the time frame of the changes involved (e.g., formation of sedimentary rock layers, deposition of ash layers, fossilization of plant or animal species) (ESS-H-C5)

The Origin and Evolution of the Universe

- 23. Identify the evidence that supports the big bang theory (ESS-H-D1)
- 24. Describe the organization of the known universe (ESS-H-D2)
- 25. Using the surface temperature and absolute magnitude data of a selected star, locate its placement on the Hertzsprung-Russell diagram and infer its color, size, and life stage (ESS-H-D3)

Science Grade-Level Expectations: Earth Science (Recommended for Grades 11–12)

- 26. Identify the elements present in selected stars, given spectrograms of known elements and those of the selected stars (ESS-H-D4)
- 27. Trace the movement and behavior of hydrogen atoms during the process of fusion as it occurs in stars like the Sun (ESS-H-D5)
- 28. Identify the relationship between orbital velocity and orbital diameter (ESS-H-D6) (PS-H-E2)
- 29. Demonstrate the elliptical shape of Earth's orbit and describe how the point of orbital focus changes during the year (ESS-H-D6)
- 30. Summarize how current technology has directly affected our knowledge of the universe (ESS-H-D7)